
Probabilistic model Probabilistic model Probabilistic model Probabilistic model cccchecking with PRISM: hecking with PRISM: hecking with PRISM: hecking with PRISM:
overview and recent developmentsoverview and recent developmentsoverview and recent developmentsoverview and recent developments

Marta Kwiatkowska

Department of Computer Science, University of Oxford

ATVA 2013, Hanoi, October 2013

2

What is probabilistic model checking?

• Probabilistic model checking…

− is a formal verification technique
for modelling and analysing systems
that exhibit probabilistic behaviour

• Formal verification…

− is the application of rigorous,
mathematics-based techniques
to establish the correctness
of computerised systems

3

Why formal verification?

• Errors in computerised systems can be costly…

Pentium chip (1994)
Bug found in FPU.

Intel (eventually) offers
to replace faulty chips.
Estimated loss: $475m

Infusion pumps
(2010)

Patients die because
of incorrect dosage.

Cause: software
malfunction.
79 recalls.

Toyota Prius (2010)
Software “glitch”

found in anti-lock
braking system.

185,000 cars recalled.

• Why verify?

• “Testing can only show the presence of errors,
not their absence.” [Edsger Dijstra]

4

Model checking

Finite-state
model

Temporal logic
specification

Result
System

Counter-
example

System
require-
ments

¬EF fail

Model checker
e.g. SMV, Spin

5

Probabilistic model checking

Probabilistic model
e.g. Markov chain

Probabilistic
temporal logic
specification

e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.1 [F fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

6

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• Examples: real-world protocols featuring randomisation:

− Randomised back-off schemes

• CSMA protocol, 802.11 Wireless LAN

− Random choice of waiting time

• IEEE1394 Firewire (root contention), Bluetooth (device discovery)

− Random choice over a set of possible addresses

• IPv4 Zeroconf dynamic configuration (link-local addressing)

− Randomised algorithms for anonymity, contract signing, …

7

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance

− to quantify rate of failures, express Quality of Service

• Examples:

− computer networks, embedded systems

− power management policies

− nano-scale circuitry: reliability through defect-tolerance

8

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance

− to quantify rate of failures, express Quality of Service

• To model biological processes

− reactions occurring between large numbers of molecules are
naturally modelled in a stochastic fashion

9

Verifying probabilistic systems

• We are not just interested in correctness

• We want to be able to quantify:

− security, privacy, trust, anonymity, fairness

− safety, reliability, performance, dependability

− resource usage, e.g. battery life

− and much more…

• Quantitative, as well as qualitative requirements:

− how reliable is my car’s Bluetooth network?

− how efficient is my phone’s power management policy?

− is my bank’s web-service secure?

− what is the expected long-run percentage of protein X?

10

Probabilistic models

DiscreteDiscreteDiscreteDiscrete
timetimetimetime

ContinuousContinuousContinuousContinuous
timetimetimetime

NondeterministicNondeterministicNondeterministicNondeterministicFully probabilisticFully probabilisticFully probabilisticFully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

Probabilistic timed
automata (PTAs)

Simple stochastic
games (SMGs)

Interactive Markov
chains (IMCs)

11

Probabilistic models

DiscreteDiscreteDiscreteDiscrete
timetimetimetime

ContinuousContinuousContinuousContinuous
timetimetimetime

NondeterministicNondeterministicNondeterministicNondeterministicFully probabilisticFully probabilisticFully probabilisticFully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

Probabilistic timed
automata (PTAs)

Simple stochastic
games (SMGs)

Interactive Markov
chains (IMCs)

12

Overview

• Introduction

• Model checking for discrete-time Markov chains (DTMCs)

− DTMCs: definition, paths & probability spaces

− PCTL model checking

− Costs and rewards

− Case studies: Bluetooth, (CTMC) DNA computing

• PRISM: overview

− modelling language, properties, GUI, etc

• PRISM: recent developments

− Multi-objective model checking

− Parametric models

− Probabilistic timed automata, case study: FireWire

− Stochastic games, case study: smartgrid protocol

• Summary

13

Discrete-time Markov chains

• Discrete-time Markov chains (DTMCs)

− state-transition systems augmented with probabilities

• States

− discrete set of states representing possible configurations of
the system being modelled

• Transitions

− transitions between states occur
in discrete time-steps

• Probabilities

− probability of making transitions
between states is given by
discrete probability distributions

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

14

Discrete-time Markov chains

• Formally, a DTMC D is a tuple (S,sinit,PPPP,L) where:

− S is a finite set of states (“state space”)

− sinit ∈ S is the initial state

− PPPP : S × S → [0,1] is the transition probability matrix

where Σs’∈S PPPP(s,s’) = 1 for all s ∈ S

− L : S → 2AP is function labelling states with atomic
propositions

• Note: no deadlock states

− i.e. every state has at least

one outgoing transition

− can add self loops to represent

final/terminating states

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

15

Paths and probabilities

• A (finite or infinite) path through a DTMC

− is a sequence of states s0s1s2s3… such that PPPP(si,si+1) > 0 ∀i

− represents an execution (i.e. one possible behaviour) of the
system which the DTMC is modelling

• To reason (quantitatively) about this system

− need to define a probability space over paths

• Intuitively:

− sample space: Path(s) = set of all
infinite paths from a state s

− events: sets of infinite paths from s

− basic events: cylinder sets (or “cones”)

− cylinder set C(ω), for a finite path ω
= set of infinite paths with the common finite prefix ω

− for example: C(ss1s2)

s1 s2s

17

Probability space over paths

• Sample space Ω = Path(s)

set of infinite paths with initial state s

• Event set ΣPath(s)

− the cylinder set C(ω) = { ω’ ∈ Path(s) | ω is prefix of ω’ }

− ΣPath(s) is the least σ-algebra on Path(s) containing C(ω) for all
finite paths ω starting in s

• Probability measure Prs

− define probability PPPPs(ω) for finite path ω = ss1…sn as:

• PPPPs(ω) = 1 if ω has length one (i.e. ω = s)

• PPPPs(ω) = PPPP(s,s1) · … · PPPP(sn-1,sn) otherwise

• define Prs(C(ω)) = PPPPs(ω) for all finite paths ω

− Prs extends uniquely to a probability measure Prs:ΣPath(s)→[0,1]

• See [KSK76] for further details

18

Probability space - Example

• Paths where sending fails the first time

− ω = s0s1s2

− C(ω) = all paths starting s0s1s2…

− PPPPs0(ω) = PPPP(s0,s1) · PPPP(s1,s2)

= 1 · 0.01 = 0.01

− Prs0(C(ω)) = PPPPs0(ω) = 0.01

• Paths which are eventually successful and with no failures

− C(s0s1s3) ∪ C(s0s1s1s3) ∪ C(s0s1s1s1s3) ∪ …

− Prs0(C(s0s1s3) ∪ C(s0s1s1s3) ∪ C(s0s1s1s1s3) ∪ …)

= PPPPs0(s0s1s3) + PPPPs0(s0s1s1s3) + PPPPs0(s0s1s1s1s3) + …

= 1·0.98 + 1·0.01·0.98 + 1·0.01·0.01·0.98 + …

= 0.9898989898…

= 98/99

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

19

PCTL

• Temporal logic for describing properties of DTMCs

− PCTL = Probabilistic Computation Tree Logic [HJ94]

− essentially the same as the logic pCTL of [ASB+95]

• Extension of (non-probabilistic) temporal logic CTL

− key addition is probabilistic operator P

− quantitative extension of CTL’s A and E operators

• Example

− send → P≥0.95 [true U≤10 deliver]

− “if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”

20

PCTL syntax

• PCTL syntax:

− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulas)

− ψ ::= X φ | φ U≤k φ | φ U φ (path formulas)

− define F φ ≡ true U φ (eventually), G φ ≡ ¬(F ¬φ) (globally)

− where a is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• A PCTL formula is always a state formula

− path formulas only occur inside the P operator

“until”

ψ is true with
probability ~p

“bounded
until”

“next”

21

PCTL semantics for DTMCs

• PCTL formulas interpreted over states of a DTMC

− s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas:

− for a state s of the DTMC (S,sinit,PPPP,L):

− s ⊨ a ⇔ a ∈ L(s)

− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ is false

• Examples

− s3 ⊨ succ

− s1 ⊨ try ∧ ¬fail
s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

22

PCTL semantics for DTMCs

• Semantics of path formulas:

− for a path ω = s0s1s2… in the DTMC:

− ω ⊨ X φ ⇔ s1 ⊨ φ

− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1

− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 such that ω ⊨ φ1 U≤k φ2

• Some examples of satisfying paths:

− X succ

− ¬fail U succ

s1 s3 s3 s3

{succ} {succ} {succ}{try}

s1 s1 s3 s3

{try} {succ} {succ}

s0

{try}

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

23

PCTL semantics for DTMCs

• Semantics of the probabilistic operator P

− informal definition: s ⊨ P~p [ψ] means that “the probability,
from state s, that ψ is true for an outgoing path satisfies ~p”

− example: s ⊨ P<0.25 [X fail] ⇔ “the probability of atomic
proposition fail being true in the next state of outgoing paths
from s is less than 0.25”

− formally: s ⊨ P~p [ψ] ⇔ Prob(s, ψ) ~ p

− where: Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }

− (sets of paths satisfying ψ are always measurable [Var85])

s

¬ψ

ψ Prob(s, ψ) ~ p ?

26

Quantitative properties

• Consider a PCTL formula P~p [ψ]

− if the probability is unknown, how to choose the bound p?

• When the outermost operator of a PTCL formula is P

− we allow the form P=? [ψ]

− “what is the probability that path formula ψ is true?”

• Model checking is no harder: compute the values anyway

• Useful to spot patterns, trends

• Example

− P=? [F err/total>0.1]

− “what is the probability
that 10% of the NAND
gate outputs are erroneous?”

27

PCTL model checking for DTMCs

• Algorithm for PCTL model checking [CY88,HJ94,CY95]

− inputs: DTMC D=(S,sinit,PPPP,L), PCTL formula φ

− output: Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• What does it mean for a DTMC D to satisfy a formula φ?

− sometimes, want to check that s ⊨ φ ∀ s ∈ S, i.e. Sat(φ) = S

− sometimes, just want to know if sinit ⊨ φ, i.e. if sinit ∈ Sat(φ)

• Sometimes, focus on quantitative results

− e.g. compute result of P=? [F error]

− e.g. compute result of P=? [F≤k error] for 0≤k≤100

28

PCTL model checking for DTMCs

• Basic algorithm proceeds by induction on parse tree of φ

− example: φ = (¬fail ∧ try) → P>0.95 [¬fail U succ]

• For the non-probabilistic operators:

− Sat(true) = S

− Sat(a) = { s ∈ S | a ∈ L(s) }

− Sat(¬φ) = S \ Sat(φ)

− Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

• For the P~p [ψ] operator

− need to compute the
probabilities Prob(s, ψ)
for all states s ∈ S

− focus here on “until”
case: ψ = φ1 U φ2

∧

¬

→

P>0.95 [· U ·]

¬

fail fail

succtry

29

PCTL until for DTMCs

• Computation of probabilities Prob(s, φ1 U φ2) for all s ∈ S

• First, identify all states where the probability is 1 or 0

− Syes = Sat(P≥1 [φ1 U φ2])

− Sno = Sat(P≤0 [φ1 U φ2])

• Then solve linear equation system for remaining states

• We refer to the first phase as “precomputation”

− two algorithms: Prob0 (for Sno) and Prob1 (for Syes)

− algorithms work on underlying graph (probabilities irrelevant)

• Important for several reasons

− reduces the set of states for which probabilities must be
computed numerically (which is more expensive)

− gives exact results for the states in Syes and Sno (no round-off)

− for P~p[·] where p is 0 or 1, no further computation required

30

PCTL until - Linear equations

• Probabilities Prob(s, φ1 U φ2) can now be obtained as the
unique solution of the following set of linear equations:

− can be reduced to a system in |S?| unknowns instead of |S|
where S? = S \ (Syes ∪ Sno)

• This can be solved with (a variety of) standard techniques

− direct methods, e.g. Gaussian elimination

− iterative methods, e.g. Jacobi, Gauss-Seidel, …
(preferred in practice due to scalability)

Prob(s, φ1 U φ2) =

1

0

P(s,s')⋅ Prob(s', φ1 U φ2)
s'∈S

∑













if s ∈ Syes

if s ∈ Sno

otherwise

31

PCTL until - Example

• Example: P>0.8 [¬a U b]

4

53

20

1
a

b

0.40.1

0.6

1 0.3

0.70.1
0.3

0.9

10.1

0.5

32

PCTL until - Example

• Example: P>0.8 [¬a U b]
Sno =

Sat(P≤0 [¬a U b])

4

53

20

1
a

b

0.40.1

0.6

1 0.3

0.70.1
0.3

0.9

1

Syes =

Sat(P≥1 [¬a U b])

0.1

0.5

33

PCTL until - Example

• Example: P>0.8 [¬a U b]

• Let xs = Prob(s, ¬a U b)

• Solve:

x4 = x5 = 1

x1 = x3 = 0

x0 = 0.1x1+0.9x2 = 0.8

x2 = 0.1x2+0.1x3+0.3x5+0.5x4 = 8/9

Prob(¬a U b) = x = [0.8, 0, 8/9, 0, 1, 1]

Sat(P>0.8 [¬a U b]) = { s2,s4,s5 }

Sno =

Sat(P≤0 [¬a U b])

4

53

20

1
a

b

0.40.1

0.6

1 0.3

0.70.1
0.3

0.9

1

Syes =

Sat(P≥1 [¬a U b])

0.1

0.5

34

PCTL model checking - Summary

• Computation of set Sat(Φ) for DTMC D and PCTL formula Φ

− recursive descent of parse tree

− combination of graph algorithms, numerical computation

• Probabilistic operator P:

− X Φ : one matrix-vector multiplication, O(|S|2)

− Φ1 U≤k Φ2 : k matrix-vector multiplications, O(k|S|2)

− Φ1 U Φ2 : linear equation system, at most |S| variables, O(|S|3)

• Complexity:

− linear in |Φ| and polynomial in |S|

35

Limitations of PCTL

• PCTL, although useful in practice, has limited expressivity

− essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

• More expressive logics can be used, for example:

− LTL [Pnu77] – (non-probabilistic) linear-time temporal logic

− PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL

− both allow path operators to be combined

− (in PCTL, P~p […] always contains a single temporal operator)

− supported by PRISM

− (not covered in this lecture)

• Another direction: extend DTMCs with costs and rewards…

36

Costs and rewards

• We augment DTMCs with rewards (or, conversely, costs)

− real-valued quantities assigned to states and/or transitions

− these can have a wide range of possible interpretations

• Some examples:

− elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, …

• Costs? or rewards?

− mathematically, no distinction between rewards and costs

− when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards

− we will consistently use the terminology “rewards” regardless

37

Reward-based properties

• Properties of DTMCs augmented with rewards

− allow a wide range of quantitative measures of the system

− basic notion: expected value of rewards

− formal property specifications will be in an extension of PCTL

• More precisely, we use two distinct classes of property…

• Instantaneous properties

− the expected value of the reward at some time point

• Cumulative properties

− the expected cumulated reward over some period

38

DTMC reward structures

• For a DTMC (S,sinit,PPPP,L), a reward structure is a pair (ρ,ιιιι)

− ρ : S → ℝ≥0 is the state reward function (vector)

− ιιιι : S × S → ℝ≥0 is the transition reward function (matrix)

• Example (for use with instantaneous properties)

− “size of message queue”: ρ maps each state to the number of
jobs in the queue in that state, ιιιι is not used

• Examples (for use with cumulative properties)

− “time-steps”: ρ returns 1 for all states and ιιιι is zero

(equivalently, ρ is zero and ιιιι returns 1 for all transitions)

− “number of messages lost”: ρ is zero and ιιιι maps transitions

corresponding to a message loss to 1

− “power consumption”: ρ is defined as the per-time-step

energy consumption in each state and ιιιι as the energy cost of

each transition

39

PCTL and rewards

• Extend PCTL to incorporate reward-based properties

− add an R operator, which is similar to the existing P operator

− φ ::= … | P~p [ψ] | R~r [I=k] | R~r [C≤k] | R~r [F φ]

− where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• R~r [·] means “the expected value of · satisfies ~r”

“reachability”

expected
reward is ~r

“cumulative”“instantaneous”

41

Reward formula semantics

• Formal semantics of the three reward operators

− based on random variables over (infinite) paths

• Recall:

− s ⊨ P~p [ψ] ⇔ Prs { ω ∈ Path(s) | ω ⊨ ψ } ~ p

• For a state s in the DTMC (see [KNP07a] for full definition):

− s ⊨ R~r [I=k] ⇔ Exp(s, XI=k) ~ r

− s ⊨ R~r [C≤k] ⇔ Exp(s, XC≤k) ~ r

− s ⊨ R~r [F Φ] ⇔ Exp(s, XFΦ) ~ r

where: Exp(s, X) denotes the expectation of the random variable

X : Path(s) → ℝ≥0 with respect to the probability measure Prs

43

Model checking reward properties

• Instantaneous: R~r [I=k]

• Cumulative: R~r [C≤k]

− variant of the method for computing bounded until
probabilities

− solution of recursive equations

• Reachability: R~r [F φ]

− similar to computing until probabilities

− precomputation phase (identify infinite reward states)

− then reduces to solving a system of linear equation

• For more details, see e.g. [KNP07a]

− complexity not increased wrt classical PCTL

44

PCTL model checking summary…

• Introduced probabilistic model checking for DTMCs

− discrete time and probability only

− PCTL model checking via linear equation solving

− LTL also supported, via automata-theoretic methods

• Continuous-time Markov chains (CTMCs)

− discrete states, continuous time

− temporal logic CSL

− model checking via uniformisation, a discretisation of the
CTMC

• Markov decision processes (MDPs)

− add nondeterminism to DTMCs

− PCTL, LTL and PCTL* supported

− model checking via linear programming

45

PRISM

• PRISM: Probabilistic symbolic model checker

− developed at Birmingham/Oxford University, since 1999

− free, open source software (GPL), runs on all major OSs

• Construction/analysis of probabilistic models…

− discrete-time Markov chains, continuous-time Markov chains,
Markov decision processes, probabilistic timed automata,
stochastic multi-player games, …

• Simple but flexible high-level modelling language

− based on guarded commands; see later…

• Many import/export options, tool connections

− in: (Bio)PEPA, stochastic π-calculus, DSD, SBML, Petri nets, …

− out: Matlab, MRMC, INFAMY, PARAM, …

46

PRISM…

• Model checking for various temporal logics…

− PCTL, CSL, LTL, PCTL*, rPATL, CTL, …

− quantitative extensions, costs/rewards, …

• Various efficient model checking engines and techniques

− symbolic methods (binary decision diagrams and extensions)

− explicit-state methods (sparse matrices, etc.)

− statistical model checking (simulation-based approximations)

− and more: symmetry reduction, quantitative abstraction
refinement, fast adaptive uniformisation, ...

• Graphical user interface

− editors, simulator, experiments, graph plotting

• See: http://www.prismmodelchecker.org/

− downloads, tutorials, case studies, papers, …

47

PRISM modelling language

• Simple, textual, state-based modelling language

− used for all probabilistic models supported by PRISM

− based on Reactive Modules [AH99]

• Language basics

− system built as parallel composition of interacting modules

− state of each module given by finite-ranging variables

− behaviour of each module specified by guarded commands

• annotated with probabilities/rates and (optional) action label

− transitions are associated with state-dependent probabilities

− interactions between modules through synchronisation

[send] (s=2) -> ploss : (s'=3)&(lost'=lost+1) + (1-ploss) : (s'=4);

action guard probability update probability update

48

Simple example

dtmc

module M1

x : [0..3] init 0;

[a] x=0 -> (x’=1);

[b] x=1 -> 0.5 : (x’=2) + 0.5 : (x’=3);

endmodule

module M2

y : [0..3] init 0;

[a] y=0 -> (y’=1);

[b] y=1 -> 0.4 : (y’=2) + 0.6 : (y’=3);

endmodule

49

Costs and rewards

• We augment models with rewards (or, conversely, costs)

− real-valued quantities assigned to states and/or transitions

− these can have a wide range of possible interpretations

• Some examples:

− elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, …

• Costs? or rewards?

− mathematically, no distinction between rewards and costs

− when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards

− we consistently use the terminology “rewards” regardless

• Properties (see later)

− reason about expected cumulative/instantaneous reward

50

Rewards in the PRISM language

(instantaneous, state rewards) (cumulative, state rewards)

(cumulative, state/trans. rewards)
(up = num. operational components,

wake = action label)

(cumulative, transition rewards)
(q = queue size, q_max = max.

queue size, receive = action label)

rewardsrewardsrewardsrewards “total_queue_size”
truetruetruetrue : queue1+queue2;

endrewardsendrewardsendrewardsendrewards

rewardsrewardsrewardsrewards “time”
truetruetruetrue : 1;

endrewardsendrewardsendrewardsendrewards

rewardsrewardsrewardsrewards “power”
sleep=truetruetruetrue : 0.25;
sleep=falsefalsefalsefalse : 1.2 * up;
[wake] true : 3.2;

endrewardsendrewardsendrewardsendrewards

rewardsrewardsrewardsrewards "dropped"
[receive] q=q_max : 1;

endrewardsendrewardsendrewardsendrewards

51

PRISM – Property specification

• Temporal logic-based property specification language

− subsumes PCTL, CSL, probabilistic LTL, PCTL*, …

• Simple examples:

− P≤0.01 [F “crash”] – “the probability of a crash is at most 0.01”

− S>0.999 [“up”] – “long-run probability of availability is >0.999”

• Usually focus on quantitative (numerical) properties:

− P=? [F “crash”]
“what is the probability
of a crash occurring?”

− then analyse trends in
quantitative properties
as system parameters vary

52

PRISM – Property specification

• Properties can combine numerical + exhaustive aspects

− Pmax=? [F≤10 “fail”] – “worst-case probability of a failure
occurring within 10 seconds, for any possible scheduling of
system components”

− P=? [G
≤0.02 !“deploy” {“crash”}{max}] - “the maximum

probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

• Reward-based properties (rewards = costs = prices)

− R{“time”}=? [F “end”] – “expected algorithm execution time”

− R{“energy”}max=? [C≤7200] – “worst-case expected energy
consumption during the first 2 hours”

• Properties can be combined with e.g. arithmetic operators

− e.g. P=? [F fail1] / P=? [F failany] – “conditional failure prob.”

53

PRISM GUI: Editing a model

54

PRISM GUI: The Simulator

55

PRISM GUI: Model checking and graphs

56

PRISM – Case studies

• Randomised distributed algorithms

− consensus, leader election, self-stabilisation, …

• Randomised communication protocols

− Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, …

• Security protocols/systems

− contract signing, anonymity, pin cracking, quantum crypto, …

• Biological systems

− cell signalling pathways, DNA computation, …

• Planning & controller synthesis

− robotics, dynamic power management, …

• Performance & reliability

− nanotechnology, cloud computing, manufacturing systems, …

• See: www.prismmodelchecker.org/casestudies

57

Case study: Bluetooth

• Device discovery between pair of Bluetooth devices

− performance essential for this phase

• Complex discovery process

− two asynchronous 28-bit clocks

− pseudo-random hopping between 32 frequencies

− random waiting scheme to avoid collisions

− 17,179,869,184 initial configurations
(too many to sample effectively)

• Probabilistic model checking

− e.g. “worst-case expected discovery time
is at most 5.17s”

− e.g. “probability discovery time exceeds
6s is always < 0.001”

− shows weaknesses in simplistic analysis

freq = [CLK16-12+k+

(CLK4-2,0-CLK16-12)

mod 16] mod 32

58

Case study: DNA programming

• DNA: easily accessible, cheap to synthesise information
processing material

• DNA Strand Displacement language, induces CTMC models

− for designing DNA circuits [Cardelli, Phillips, et al.]

− accompanying software tool for analysis/simulation

− now extended to include auto-generation of PRISM models

• Transducer: converts input <t^ x> into output <y t^>

• Formalising correctness: does it finish successfully?…

− A [G "deadlock" => "all_done"]

− E [F "all_done"] (CTL, but probabilistic also…)

59

Transducer flaw

• PRISM identifies a 5-step trace to the
“bad” deadlock state

− problem caused by “crosstalk”
(interference) between DSD species
from the two copies of the gates

− previously found manually [Cardelli’10]

− detection now fully automated

• Bug is easily fixed

− (and verified)

Counterexample:Counterexample:Counterexample:Counterexample:
(1,1,1,1,1,1,1,1,1,0)
(0,1,1,0,1,1,1,1,1,1,1,0)
(0,0,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0)

reactive gates

60

PRISM: Recent & new developments

• Major new features:

1. multi-objective model checking

2. parametric model checking

3. real-time: probabilistic timed automata (PTAs)

4. games: stochastic multi-player games (SMGs)

• Further new additions:

− strategy (adversary) synthesis (see ATVA’13 invited lecture)

− CTL model checking & counterexample generation

− enhanced statistical model checking
(approximations + confidence intervals, acceptance sampling)

− efficient CTMC model checking
(fast adaptive uniformisation) [Mateescu et al., CMSB'13]

− benchmark suite & testing functionality [QEST'12]
www.prismmodelchecker.org/benchmarks/

61

1. Multi-objective model checking

• Markov decision processes (MDPs)

− generalise DTMCs by adding nondeterminism

− for: control, concurrency, abstraction, …

• Strategies (or "adversaries", "policies")

− resolve nondeterminism, i.e. choose an
action in each state based on current history

− a strategy induces an (infinite-state) DTMC

• Verification (probabilistic model checking) of MDPs

− quantify over all possible strategies… (i.e. best/worst-case)

− P<0.01[F err] : “the probability of an error is always < 0.01”

• Strategy synthesis (dual problem)

− "does there exist a strategy for which the probability of an
error occurring is < 0.01?”

− “how to minimise expected run-time?”

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

62

1. Multi-objective model checking

• Multi-objective probabilistic model checking

− investigate trade-offs between conflicting objectives

− in PRISM, objectives are probabilistic LTL or expected rewards

• Achievability queries

− e.g. “is there a strategy such that the probability of message
transmission is > 0.95 and expected battery life > 10 hrs?”

− multi(P>0.95 [F transmit], Rtime
>10 [C])

• Numerical queries

− e.g. “maximum probability of message transmission,
assuming expected battery life-time is > 10 hrs?”

− multi(Pmax=? [F transmit], Rtime
>10 [C])

• Pareto queries

− e.g. "Pareto curve for maximising probability
of transmission and expected battery life-time”

− multi(Pmax=? [F transmit], Rtime
max=? [C])

obj1

o
b
j 2

63

Case study: Dynamic power management

• Synthesis of dynamic power management schemes

− for an IBM TravelStar VP disk drive

− 5 different power modes: active, idle, idlelp, stby, sleep

− power manager controller bases decisions on current power
mode, disk request queue, etc.

• Build controllers that

− minimise energy
consumption, subject to
constraints on e.g.

− probability that a request
waits more than K steps

− expected number of
lost disk requests

• See: http://www.prismmodelchecker.org/files/tacas11/

64

2. Parametric model checking

• Can specify models in parametric form [TASE13]

− parameters expressed as unevaluated constants

− e.g. const double x;

− transition probabilities specified as expressions over

parameters, e.g. 0.5 + x

• Properties are given in PCTL, with parameter constants

− new construct constfilter (min, x1*x2, prop)

− filters over parameter values, rather than states

• Determine parameter valuations to guarantee satisfaction
of given properties, useful for model repair

• Two methods implemented in PRISM (‘explicit’ engine)

− constraints-based approach is a reimplementation of PARAM
2.0 [Hahn et al]

− sampling-based approaches are new implementation

65

Case study: parametric network virus

• Parametric model of a network virus

− a grid of connected nodes

− virus spawns/multiplies

− once infected, virus
repeatedly tries to spread
to neighbouring nodes

− there are ‘high’ and ‘low’
nodes, with barrier nodes from ‘high’ to ‘low’

− choice of infection by virus probabilistic

− choice of which node to infect nondeterministic

• Property specification

− minimal expected number of attacks until infection of (1,1),
starting from (N,N), is upper bounded by 20

− probability of detection and of barrier nodes subject to repair
by increasing plhadd and pbaadd

66

Case study: parametric models

Checking if minimal exp. number of attacks >= 20

Property constfilter(min,…,R{“attacks”}>=20 [F “end”])

Model (network virus) has 809 states, ε = 0.05

Optimal value found in 2mins, showing optimal parameter
values

67

3. Probabilistic timed automata (PTAs)

• Probability + nondeterminism + real-time

− timed automata + discrete probabilistic choice, or…

− probabilistic automata + real-valued clocks

• PTA example: message transmission over faulty channel

“init”

x≤2

0.9

retry

“done”

true

“lost”

x≤5

“fail”

true

quit

send
x≥3

x:=0

0.1

x≥1∧tries≤N

tries:=0

tries>N

x:=0,
tries:=tries+1

States
• locations + data variables

Transitions
• guards and action labels

Real-valued clocks
• state invariants, guards, resets

Probability
• discrete probabilistic choice

68

Modelling PTAs in PRISM

• PRISM modelling language

− textual language, based on guarded commands

ptaptaptapta

const int const int const int const int N;

module module module module transmitter

s : [0..3] init init init init 0;
tries : [0..N+1] init init init init 0;

x : clockclockclockclock;

invariant invariant invariant invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariantendinvariantendinvariantendinvariant

[send] s=0 & tries≤N & x≥1
→ 0.9 : (s’=3)
+ 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);

[retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
[quit] s=0 & tries>N → (s’ =2);

endmoduleendmoduleendmoduleendmodule

rewards rewards rewards rewards “energy” (s=0) : 2.5; endrewardsendrewardsendrewardsendrewards

69

Modelling PTAs in PRISM

• PRISM modelling language

− textual language, based on guarded commands

Basic ingredients:

• modules
• variables
• commands

ptaptaptapta

const int const int const int const int N;

module module module module transmitter

s : [0..3] init init init init 0;
tries : [0..N+1] init init init init 0;

x : clockclockclockclock;

invariant invariant invariant invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariantendinvariantendinvariantendinvariant

[send] s=0 & tries≤N & x≥1
→ 0.9 : (s’=3)
+ 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);

[retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
[quit] s=0 & tries>N → (s’ =2);

endmoduleendmoduleendmoduleendmodule

rewards rewards rewards rewards “energy” (s=0) : 2.5; endrewardsendrewardsendrewardsendrewards

70

Modelling PTAs in PRISM

• PRISM modelling language

− textual language, based on guarded commands

ptaptaptapta

const int const int const int const int N;

module module module module transmitter

s : [0..3] init init init init 0;
tries : [0..N+1] init init init init 0;

x : clockclockclockclock;

invariant invariant invariant invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariantendinvariantendinvariantendinvariant

[send] s=0 & tries≤N & x≥1
→ 0.9 : (s’=3)
+ 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);

[retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
[quit] s=0 & tries>N → (s’ =2);

endmoduleendmoduleendmoduleendmodule

rewards rewards rewards rewards “energy” (s=0) : 2.5; endrewardsendrewardsendrewardsendrewards

New for PTAs:

• clocks
• invariants
• guards/resets

Basic ingredients:

• modules
• variables
• commands

71

Modelling PTAs in PRISM

• PRISM modelling language

− textual language, based on guarded commands

New for PTAs:

• clocks
• invariants
• guards/resets

Basic ingredients:

• modules
• variables
• commands

Also:

• rewards
(i.e. costs, prices)

ptaptaptapta

const int const int const int const int N;

module module module module transmitter

s : [0..3] init init init init 0;
tries : [0..N+1] init init init init 0;

x : clockclockclockclock;

invariant invariant invariant invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariantendinvariantendinvariantendinvariant

[send] s=0 & tries≤N & x≥1
→ 0.9 : (s’=3)
+ 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);

[retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
[quit] s=0 & tries>N → (s’ =2);

endmoduleendmoduleendmoduleendmodule

rewards rewards rewards rewards “energy” (s=0) : 2.5; endrewardsendrewardsendrewardsendrewards

72

Model checking PTAs in PRISM

• Properties for PTAs:

− min/max probability of reaching X (within time T)

− min/max expected cost/reward to reach X

(for “linearly-priced” PTAs, i.e. reward gain linear with time)

• PRISM has two different PTA model checking techniques…

• “Digital clocks” – conversion to finite-state MDP

− preserves min/max probability + expected cost/reward/price

− (for PTAs with closed, diagonal-free constraints)

− efficient, in combination with PRISM’s symbolic engines

• Quantitative abstraction refinement

− zone-based abstractions of PTAs using stochastic games

− provide lower/upper bounds on quantitative properties

− automatic iterative abstraction refinement

73

Case study: FireWire root contention

• FireWire (IEEE 1394)

− high-performance serial bus for networking
multimedia devices; originally by Apple

− "hot-pluggable" - add/remove
devices at any time

− no requirement for a single PC (but need acyclic topology)

• Root contention protocol

− leader election algorithm, when nodes join/leave

− symmetric, distributed protocol

− uses randomisation (electronic coin tossing) and timing delays

− nodes send messages: "be my parent"

− root contention: when nodes contend leadership

− random choice: "fast"/"slow" delay before retry

74

Case study: FireWire root contention

• Detailed probabilistic model:

− probabilistic timed automaton (PTA), including:

• concurrency: messages between nodes and wires

• timing delays taken from official standard

• underspecification of delays (upper/lower bounds)

− maximum model size: 170 million states

• Probabilistic model checking (with PRISM)

− verified that root contention always
resolved with probability 1

• P≥1 [F (end ∧ elected)]

− investigated worst-case expected time
taken for protocol to complete

• Rmax=? [F (end ∧ elected)]

− investigated the effect of using biased coin

75

Case study: FireWire root contention

“minimum probability
of electing leader by time T”

(using a biased coin)

“maximum expected
time to elect a leader”

(using a biased coin)

76

4. Stochastic multi-player games (SMGs)

• Stochastic multi-player games

− players control states; choose actions

− models competitive/collaborative behaviour

• Probabilistic model checking

− automated methods to reason about complex
player strategies and interaction with probabilities

• Property specifications

− rPATL: extends Alternating Temporal Logic (and PCTL)

− ⟨⟨{yellow,blue}⟩⟩ P>1/3 [F ✓]

− “do players ‘yellow’ and ‘blue’ have a strategy to ensure that
the probability of reaching end state is greater than 1/3,
regardless of the strategies of other players?”

• Applications

− controller synthesis, security (system vs. attacker), …

• PRISM-games: www.prismmodelchecker.org/games

b

a ¼

¼
¼

½

¼

✓

1

1
½

1
a

b

1

a

b

77

Case study: Energy management

• Energy management protocol for Microgrid

− Microgrid: local energy management

− randomised demand management protocol
[Hildmann/Saffre'11]

− probability: randomisation, demand model, …

• Existing analysis

− simulation-based

− assumes all clients are unselfish

• Our analysis

− stochastic multi-player game

− clients can cheat (and cooperate)

− exposes protocol weakness

− propose/verify simple fix

78

Microgrid demand-side management

• The model

− SMG with N players (one per household)

− analyse 3-day period, using piecewise
approximation of daily demand curve

− add rewards for value V

• Built/analysed models

− for N=2,…,7 households

• Step 1: assume all households
follow algorithm of [HS’11] (MDP)

− obtain optimal value for Pstart

• Step 2: introduce competitive behaviour (SMG)

− allow coalition C of households to deviate from algorithm

NNNN StatesStatesStatesStates TransitionsTransitionsTransitionsTransitions

5 743,904 2,145,120

6 2,384,369 7,260,756

7 6,241,312 19,678,246

79

Results: Competitive behaviour

• The original algorithm does not discourage selfish
behaviour…

All follow alg.

No use of alg.

Deviations of
varying size

Strong
incentive to
deviate

80

Results: Competitive behaviour

• Algorithm fix: simple punishment mechanism

− distribution manager can cancel some tasks

All follow alg.

Deviations of
varying size

Better to
collaborate
(with all)

81

Conclusion

• Introduction to probabilistic model checking

• Overview of PRISM

• New developments

1. multi-objective model checking

2. parametric model checking

3. real-time: probabilistic timed automata (PTAs)

4. games: stochastic multi-player games (SMGs)

• Related/future work

− quantitative runtime verification [TSE’11,CACM’12]

− statistical model checking [TACAS’04,STTT’06]

− multi-objective stochastic games [MFCS’13,QEST’13]

− verification of cardiac pacemakers [RTSS’12, HSCC’13]

− probabilistic hybrid automata [CPSWeek’13 tutorial]

82

References

• Tutorial papers

− M. Kwiatkowska, G. Norman and D. Parker. Stochastic Model
Checking. In SFM'07, vol 4486 of LNCS (Tutorial Volume), pages 220-
270, Springer. June 2007.

− V. Forejt, M. Kwiatkowska, G. Norman and D. Parker. Automated
Verification Techniques for Probabilistic Systems. In SFM'11, volume
6659 of LNCS, pages 53-113, Springer. June 2011.

− G. Norman, D. Parker and J. Sproston. Model Checking for
Probabilistic Timed Automata. Formal Methods in System Design,
43(2), pages 164-190, Springer. September 2013.

− M. Kwiatkowska, G. Norman and D. Parker. Probabilistic Model
Checking for Systems Biology. In Symbolic Systems Biology, pages 31-
59, Jones and Bartlett. May 2010.

• PRISM tool paper

− M. Kwiatkowska, G. Norman and D. Parker. PRISM 4.0: Verification of
Probabilistic Real-time Systems. In Proc. CAV'11, volume 6806 of
LNCS, pages 585-591, Springer. July 2011.

83

Acknowledgements

• My group and collaborators in this work

• Project funding

− ERC, EPSRC, Microsoft Research

− Oxford Martin School, Institute for the Future of Computing

• See also

− www.veriware.org

− PRISM www.prismmodelchecker.org

